
Secure RTP Library API Documentation

David A. McGrew
Cisco Systems, Inc.

Contents

1 Overview 1

2 Secure RTP Functions 3

srtp protect() . 3

srtp unprotect() . 4

srtp get trailer length() . 4

srtp alloc() . 5

srtp dealloc() . 6

srtp init aes 128 prf() . 6

srtp protect srtcp() . 6

srtp unprotect srtcp() . 6

srtp get srtcp trailer length() . 6

3 Cryptographic Functions 7

i

Chapter 1

Overview

This document describes the API for libsrtp, the Open Source Secure RTP library from Cisco
Systems, Inc. RTP is the Real-time Transport Protocol, an IETF standard for the transport of
real-time data such as telephony, audio, and video, defined by RFC1889. Secure RTP (SRTP) is
an RTP profile for providing confidentiality to RTP data and authentication to the RTP header
and payload. SRTP is currently an Internet Draft in the IETF Audio/Video Transport Working
Group.

Libsrtp provides functions for protecting RTP sessions. RTP packets can be encrypted and authen-
ticated (using the srtp protect() function), turning them into SRTP packets. Similarly, SRTP
packets can be decrypted and have their authentication verified (using the srtp unprotect() func-
tion), turning them into RTP packets.

The typedef srtp t points to a structure holding all of the state associated with an SRTP stream,
including the keys and parameters for cipher and message authentication functions and temporary
storage used in processing the data. This pointer is the first argument to all of the libsrtp functions.
A particular srtp t holds the information needed to protect a particular RTP and RTCP stream.
Recall that an RTP session is defined by a pair of destination transport address, e.g. the IP address
and UDP port numbers of the RTP and RTCP. Within a session, there can be multiple streams,
each originating from a particular sender. Each sender has a distinct SRTP context with a distinct
master key used to protect the RTP and RTCP streams that it is originating. The srtp t is a
handle to the context used to protect a particular RTP and RTCP stream.

The enum sec serv t describes the security services that SRTP can provide. It is provided to
srtp alloc(), when a srtp t is initialized, in order to specify the services that will be applied by
srtp protect() or be enforced by srtp unprotect(). The values and their meanings are given
in the following table.

1

2 CHAPTER 1. OVERVIEW

Value Meaning
sec serv none No security services are provided
sec serv conf RTP payload confidentiality is provided
sec serv auth RTP packet authentication is provided
sec serv conf and auth RTP packet authentication and payload confidentiality provided

The structure srtp hdr t contains an RTP or SRTP header (both formats are identical). This
structure is assumed to be aligned on a four-byte boundary.

An srtp t is as allocated using the function srtp alloc() and then initialized using the function
srtp init aes prf(). After it is initialized, it can be used to protect RTP packets using the
srtp protect() function, and to protect RTCP packets using the srtp protect rtcp() function.
Alternatively, it can be used to unprotect SRTP or SRTCP packets using the srtp unprotect()
and srtp unprotect srtcp() functions. A particular srtp t should only be used for protection or
for unprotection, but not for both. Like most cryptographic protocols, Secure RTP requires that
only one device use a particular key to encrypt outbound traffic. To ensure that this property is
maintained, each RTP/RTCP stream must be protected by a distinct srtp t, and each srtp t
must be used to protect a single stream (or unprotect a single stream, on the receiver’s side).

Chapter 2

Secure RTP Functions

srtp protect()

err status t srtp protect(srtp t ctx, srtp hdr t *pkt, int *pkt octet len)

The function srtp protect(ctx, pkt, len) applies secure rtp protection to the packet pkt (which has
length *len) using the srtp context ctx. It is the srtp sender-side packet processing function. The
arguments are:

ctx is a pointer to the srtp t which applies to the particular packet

pkt is a pointer to the header of the rtp packet to be secured; after the function returns,
it points to the srtp packet

pkt octet len is a pointer to the length in octets of the complete RTP packet (header
and body) before the function call, and of the complete SRTP packet after the
function returns

The return values are

err status ok no problems occured

err status replay fail the RTP sequence number was used before (e.g. is non-increasing);
repeat values cannot be used by SRTP

other failure in cryptographic mechanisms

Note: this function may write data at the end of the packet. There must be
writeable memory at the end of the packet to hold this data, though this memory need

3

4 CHAPTER 2. SECURE RTP FUNCTIONS

not be initialized. The length of this data is constant for a given srtp t and can be
found by using the function srtp get trailer length().

srtp unprotect()

err status t srtp unprotect(srtp t ctx, srtp hdr t *pkt, int *pkt octet len)

The function srtp unprotect(ctx, pkt, len) applies secure rtp protection to the RTP packet pointed
to by pkt (which has length *len), using the srtp contet pointed to by ctx. This is the secure rtp
receiver-side packet processing function. The arguments are:

ctx is the srtp t context to apply to the particular packet
pkt is a pointer to the srtp packet (before the call). after the function returns, it points

to the rtp packet if err status ok was returned; otherwise, the value of the data to
which it points is undefined.

pkt octet len is a pointer to the length in octets of the complete srtp packet (header
and body) before the function call, and of the complete rtp packet after the call,
if err status ok was returned. otherwise, the value of the data to which it points
is undefined.

The return values are

err status ok the rtp packet is valid
err status auth fail the srtp packet failed message authentication
err status replay fail the srtp packet is a replay (this packet has already been pro-

cessed
other failure in cryptographic mechanisms

If err status ok is returned, then pkt points to the RTP packet and pkt octet len is
the number of octets in that packet; otherwise, no assumptions should be made about
either data elements.

srtp get trailer length()

int srtp get trailer length(const srtp t a)

The function srtp get trailer length(&a) returns the number of octets that will be added to an
RTP packet by the SRTP processing. This value is constant for a given srtp t (i.e. between
initializations).

5

srtp alloc()

err status t srtp alloc(srtp t *ctx,
cipher type t *ctype,
int cipher key len,
auth type t *atype,
int auth key len,
int auth tag len,
sec serv t sec serv)

The function srtp alloc() allocates a secure rtp context given a pointer to an srtp t. The other
arguments are parameter values providing details on the SRTP options provided by the context.
The arguments are:

ctx the address of the srtp t which will point to the structure that is allocated

ctype the type of cipher to be used (see the description of cipher type t below)

cipher key len the cipher’s key length in octets

atype the type of authentication function to be used (see the description of the auth type t
below)

auth key len the authentication key length in octets

auth tag len the authentication tag length in octets

sec serv the security services flag (defined above)

The return values are:

err status ok no problems

err status alloc fail a memory allocation failure occured

The cipher and authentication function parameters are described in Chapter 3. For now, please
look in the file test/srtp-driver.c for an example usage of these parameters.

After an srtp t is allocated, it must be initialized by calling the srtp init aes 128 prf(...) function
(see below). An alternative but unrecommended method is to initialize the cipher t and auth t
using the cipher and auth APIs directory.

6 CHAPTER 2. SECURE RTP FUNCTIONS

srtp dealloc()

err status t srtp dealloc(srtp t ctx)

srtp dealloc(ctx) deallocates storage for an srtp t. this function should be called exactly once to
deallocate the storage allocated by the function call srtp alloc(&ctx).

The return values are:

err status ok no problems
err status dealloc fail a memory deallocation failure occured

srtp init aes 128 prf()

err status t srtp init aes 128 prf(srtp t srtp, const octet t key[16], const octet t salt[14]);

The function srtp init aes 128 prf(ctx, key, salt) initializes an srtp t with a given master key and
master salt.

The PRF used for key derivation here is that defined in the secure rtp specification, though in
theory other PRFs can be used. The cipher is hardwired to AES-128 Counter Mode with 112 bits
of salt.

srtp protect srtcp()

err status t srtp protect rtcp(srtp t ctx, srtcp hdr t *pkt, int *pkt octet len)

This function has not yet been implemented. It will work like srtp protect().

srtp unprotect srtcp()

err status t srtp unprotect rtcp(srtp t ctx, srtcp hdr t *pkt, int *pkt octet len)

This function has not yet been implemented. It will work like srtp unprotect().

srtp get srtcp trailer length()

This function is not yet implemented. It will work like srtp get trailer length().

Chapter 3

Cryptographic Functions

Libsrtp uses a self-contained cryptographic kernel containing ciphers and message authentication
functions. A future version of libsrtp will allow the use of cryptographic mechanisms other than
the default mechanisms of AES 128 and TMMHv2 4.

A cipher type t is a cipher algorithm type. A cipher t is a particular cipher, containing a
particular key and parameters.

7

